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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-966

EFFECT OF DECARBURIZATION ON

NOTCH SENSITIVITY AND FATIGUE-CRACK-PROPAGATION RATES IN

12 MoV STAINLESS-STEEL SHEET

By William H. Herrnstein III and Arthur J. McEvily, Jr.

SUMMARY

Tests were conducted in order to determine the effect of surface

decarburization on the notch sensitivity and rate of fatigue crack prop-

agation in 12 MoV stainless-steel sheet at room temperature. Three speci-

men configurations were utilized in the course of the investigation:

standard tensile specimen, 9-inch-wide specimens containing fatigue cracks

or thread-cut notches of 0.O05-inch radius, and 2-inch-wide specimens con-

taining fatigue cracks. The 12 MoV stainless-steel sheet in the normal

condition was found to have an ultimate tensile strength of 251 ksi and to

be extremely notch sensitive. The material in the decarburized condition

was found to have an ultimate tensile strength of 210 ksi and to be con-

siderably stronger than the normal material in the presence of fatigue

cracks. Decarburization did not appear to have any significant influence

on the rate of fatigue crack propagation in the 2-inch-wide specimens at

the stress levels considered. In addition to the tests, two methods for

predicting residual static strength and their application to the material
are discussed.

INTRODUCTION

The notch sensitivity of high-strength steels is a matter of concern

in the design of critical structures such as missile cases. Cracks may

develop in these structures as a result of flaws, poor welding technique,

or low cycle fatigue. It has been suggested (refs. i and 2) that this

notch sensitivity may be lowered through surface decarburization. I)ecar-

burization, while reducing notch sensitivity, also reduces the high static

strength; therefore, a balance between these two effects would have to be

reached in order to obtain an optimum design. In addition, since the

growth of fatigue cracks to critical size is of concern 3 the effect of

decarburization on the rate of fatigue crack propagation must be
considered.

The present paper presents the results of an investigation aimed at

evaluating these factors for a material of known high notch sensitivity,
12 MoV stainless steel.
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SYMBOLS

a

E n

Eu

G C

KE

KH

KN

K u

R

S

Snet

Sn u

S o

Su

W

P

p'

Pe

half-length of internal notch, in.

secant modulus for nominal stress cn net section, ksi

secant modulus corresponding to point of maximum stress on

stress-strain curve, ksi

material constant, critical crack (xtension force for onset

of fast crack propagation, ib/in.

theoretical stress concentration factor for ellipse

theoretical stress concentration factor for circular hole

theoretical stress concentration f_ctor modified for size

effect

stress concentration factor for ultimate tensile strength,

SulSnu

ratio of minimum stress to maximum stress in fatigue cycle

nominal stress on net section, ksi

maximum load in fatigue cycle divided by remaining net

sectional area, ksi

maximum load in static fracture te_:t divided by the net

section area immediately prior t¢ the static fracture test,
ksi

maximum load in fatigue cycle divided by initial net sectional

area, ksi

ultimate tensile strength of materlal, ksi

width of specimen, in.

radius of curvature at notch root, in.

Neuber material constant, in.

effective radius of curvature at notch root, in.
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MATERIAL 3 SPECIMENS, AND TESTS

Material

Type 12 MoV stainless-steel sheet was chosen for this investigation

primarily for its pronounced static notch sensitivity to sharp cracks at

room temperature. The material was supplied by the manufacturer in the

form of two sheets having nominal thicknesses of 0.025 inch and

0.031 inch. The nominal composition is given in table I.

The material was heat treated according to the schedule given in

table II. The O.025-inch sheet was decarburized (fig. i) to an extent

which varied somewhat over the surface of the sheet by austenitizing in

air. In order to avoid decarburization_ the 0.031-inch sheet was

austenitized in a hydrogen atmosphere (fig. i). The material in the

nondecarburized condition will hereafter be referred to as normal.

Specimens

Three specimen configurations were utilized in the course of this

investigation. All specimens were cut with the load axis parallel to

the rolling direction.

Standard sheet tensile specimens.- The standard sheet tensile speci-

men (fig. 2(a)), which complies with ASTM standards (ref. 3), was used

for the determination of the mechanical properties and stress-strain

curves of the material in both the decarburized and normal conditions.

After machining and prior to testing_ the faces and edges of these speci-

mens were dry polished with 3/0 emery paper in order to remove the heat

treating scale and to insure notch-free surfaces.

Static strength specimens.- Notched 9-inch-wide specimens (fig. 2(b))

were tested in order to evaluate the static notch sensitivity of the

material in each condition. 0ne-half of these specimens contained an

internal notch of arbitrary length with a notch root radius of 0.005 inch;

the rest contained a fatigue crack which was grown from an internal notch

of arbitrary length.

Notches (fig. 2(b)) were prepared by first cutting to within approxi-

mately 0.030 inch of the desired length of cut with a Jeweler's saw. The

0.O05-inch radius was then formed by repeatedly drawing a nylon thread

impregnated with a fine grinding compound across the notch root. The

fatigue cracks were initiated and grown from the thread-cut notches under

axial tension loads with R _ O. The nominal stresses at which the

cracks were grown ranged between 22 and 138 ksi depending upon the length

of the saw cut in the specimen.
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Crack propagation specimens.- Notched 2-inch-wide specimens

(fig. 2(b)) were tested to determine the rate of fatigue crack propaga-

tion as a function of stress for the material in both the decarburized

and normal conditions. Prior to testing, the region of the specimen in

the vicinity of the notch was polished in order to facilitate observa-

tion of the crack as it propagated. Scribe harks were placed perpen-

dicular to the path of the crack at measured intervals in order that the

growth could be measured during the test with the aid of a 30× micro-

scope and stroboscopic illumination.

Tests

Three types of tests were involved in t_is investigation. All

tests were conducted at room temperature.

Standard tensile.- A number of standard tensile tests were con-

ducted such that a reliable average of the mechanical properties of the

material in each condition might be establisaed. The strain rate in

these tests was approximately 0.2 percent per minute.

Residual static stren6th.- The residual static strength of the

9-inch-wide specimens containing internal notches was determined by

tension loading the specimens to failure in _ 120,000-pound-capacity

hydraulic testing machine. Guide plates wer_ used to prevent localized

buckling at the stress raiser due to transverse compressive stresses in

tests on the normal specimens. Very little buckling was observed,

however, in the tests on decarburized specimens without guide plates.

Aside from this difference, the tests on the decarburized and normal

specimens in this investigation were conducted in the same manner. The

strain rate for all tests was approximately 0.2 percent per minute.

Crack propagation.- The fatigue crack p?opagation tests were con-

ducted under axial load with notched 2-inch-_-Ide specimens in both the

decarburized and normal conditions. The fatigue machines used are of

the subresonant type with nominal capacity of ±20,000 pounds. The

machines are equipped with auxiliary hydraulic loading systems for

applying high loads at reduced speeds (ref. 4). As in the case of the

residual static strength tests, the normal specimens were restrained

from buckling by guide plates.

Fatigue cracks were initiated at the notch roots in all specimens

by cycling hydraulically at So = 60 ksi wi_h R _ O. The fatigue

crack was then propagated to failure at constant load amplitude with

R _ 0 at So = 60, 50, 40, 30, or 20 ksi. Two specimens in each con-

dition were tested at each stress level with two exceptions. The

exceptions were the stress levels of 40 and 20 ksi at which only one
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specimen of the normal material was tested. At the stress levels of 60j

503 and 40 ksi the cycling was performed hydraulically at speeds not

exceeding 20 cpm. At the lower stress levels the cycling was performed

mechanically at a speed of approximately 1,800 cpm.

In order to start crack growth at the stress levels of 30 and 20 ksi

after initiation at the higher stress_ it was necessary to cycle the

specimens for a time at each of a series of progressively lower stresses

approaching the stress at which the crack was propagated. This procedure

was necessary because the residual compressive stresses developed at the

tip of the fatigue crack at a high stress level will retard crack growth
at some lower stress level if the difference in the two stress levels is

large (ref. 5).

RESULTS

Standard Tensile

The results of the standard tensile tests are presented in table III

for the material in both the decarburized and normal conditions. A

typical stress-strain curve for the material in each condition is shown

in figure 3. The properties of the decarburized material were subject to

an amount of scatter significantly greater than that associated with the

normal material. This is reflected in the larger scatter range for the

ultimate strength as given in the table. It should be noted that the

percent elongation for the material in the normal condition is signifi-

cantly lower than has been reported elsewhere for this material of

similar thickness. Elongations of 10.5 percent in 2 inches are reported

for O.050-inch-thick sheet in reference 6.

Failures were of the brittle type with the fracture surfaces per-

pendicular to the specimen edges for the most part. In two instances,

specimens of the normal material shattered into three pieces at failure.

Residual Static Strength

The results of the residual static strength tests are presented in

table IV and are shown in figure 4.

In figure 4 the residual static strength Snu is plotted as a

function of crack length for all the 9-inch-wide specimens tested. This

figure indicates that short cracks result in large reductions in residual

static strength for the material in either the decarburized or normal

conditions. In addition, this figure shows that the percent reduction
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in strength is, as would be expected, a function of the severity of the

notch. The reduction is greater for the specimens containing fatigue

cracks than for specimens containing thread-cut notches regardless of

the crack length or condition of the material.

The specimens failed in a consistent marmner with one exception.

The cracks initiated at the notch roots and propagated immediately in a

direction normal to the edge of the specimens until failure was complete.

The exception was specimen 1 of the normal material which shattered into

several pieces at failure. No slow crack growth was observed in any

test.

Crack Propagation

The results of the crack propagation tests are shown in figure 5.

The crack lengths given in the figure are the averages for the specimens

tested at each propagation stress level. The curves were plotted from a

common crack length at each stress level in order to facilitate compari-

son between the material in the decarburized and normal conditions. The

stress levels were chosen to provide data over a wide range of fatigue

life.

In general, the cracks grew in a symmetric fashion. No tearing

or stepwise growth was observed until failure was imminent.
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DISCUSSION

Standard Tensile Tests

The effect of decarburization on the mechanical properties of

12 MoV stainless steel is readily seen in tatle III. The material in

the decarburized condition has a lower yield strength and ultimate

tensile strength but is slightly more ductile. In this discussion it
is assumed that the 6-mil difference in sheet thickness contributes

negligibly to the observed differences in strength and ductility. This

assumption would seem reasonable in view of the fact that no difference

in ductility and only a difference of approximately 6 ksi in ultimate

strength have been observed for O.lO0-inch- snd O.050-inch-thick 12 MoV

stainless-steel sheet (ref. 6). The observed differences, therefore,

will be attributed to decarburization.

It has been mentioned previously that the extent of decarburization

was not uniform from specimen to specimen. This nonuniformity in all

liklihood accounts for the greater scatter e_ident in the results of

tests on decarburized specimens.
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Residual Static Strength Tests

The effect of decarburization on the notch sensitivity of 12 MoV

stainless-steel sheet can be seen in figures 4, 6, and 7- In figures 6

and 7, the residual-static-strength data are presented with Snu plotted

as a percent of Su, the ultimate strength. (The curves on the figure

will be explained and discussed subsequently.) Comparison of the data

points in figures 6 and 7 indicates that the notch sensitivity to

0.O05-inch thread-cut notches is about the same in decarburized and

normal material except for the point for the longest notch in the normal

material. This point, corresponding to normal specimen 8, is very low

and will be discussed later. However, the decarburized material is

decidedly less notch sensitive to fatigue cracks. Indeed, Snu/S u for

decarburized material is more than twice that of the normal material

over most of the fatigue crack range. Figure 4 indicates that the

absolute load-carrying capacity of the decarburizedmaterial containing

fatigue cracks exceeds that of the normal material, particularly in the

short-crack range. It appears, then, that even though the ultimate

tensile strength is reduced, decarburlzation of such materials can be

beneficial particularly in applications where short fatigue or welding
cracks must be tolerated.

The applicability of methods of analysis developed for the predic-

tion of residual static strength to the data obtained for 12 MoV stain-

less steel was an additional consideration in this investigation. The

two methods considered were the methods proposed in references 7 and 8.

The former may be called the stress-concentration method; the latter,
the Griffith-Irwin method.

The stress-concentration method is based upon the calculation of

the maximum local stress in the specimen. The elastic stress concen-

tration factor for a symmetric elliptical hole in a sheet under tension

is computed by using the following modification of the expression for

the stress concentration at a hole in a sheet of finite width:

The elastic factor is then modified for size by using the relation

(i)

 N:l+ K -I (2)
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In the case of a crack, which is considered as an elongated ellipse, an

effective radius Pe is used for p (ref. 7). The factor KN, when

modified for plasticity effects, results in the following expression for

the stress concentration factor at fracture:

Su
- i+ - (3)

Ku = Snu ]Ea

Application of equation (3) requires evaluation of the quantities

Pe, p', and Eu/E n. The quantity Eu/E n was gound from the stress-

strain curve. Its value for stresses below the yield stress was found
to be 0.161 for the normal material and 0.114 f3r the decarburized

material. As in reference 7, P' was calculated from the results of

tests of specimens containing notches of known radii (0.005 inch) by

using equations (1), (2), and (3)- This value of p' was then used to

calculate Pe from tests of specimens containing fatigue cracks.

When this approach was attempted in analyzing the present data it

was found that a value of p' = 0.02 inch was necessary to obtain agree-

ment between the theory and the experimental dasa for the normal speci-

mens containing 0.005-inch notches. The next step was to use this value

of p' and compute Pe for the specimens containing fatigue cracks

by means of equations (1), (2), and (3). However, when this approach

was attempted it was found that even for Pe _ 0 the values of KN

were not large enough to bring the data and predictions into agreement.

The reason for this is that the expression for K N (eq. (2)), approaches

a limiting value as Pe approaches zero, such that KN is a function of

p'. This relationship is given in the following equation:

(4)

Since it appeared that Pe was much less than p', equation (4) was

applied to the fatigue-crack data, and a value of p' = 0.0015 inch was

obtained for the normal material. Similarly, a value of p' = 0.005 inch

was obtained for the decarburized material. These values were adopted in

the present analysis and were used for both the thread-cut and fatigue

crack predictions of static strength.

The stress-concentration-method prediction_ using these values of

p' are shown as the solid lines in figures 6 a_:d 7. In general, agree-

ment between theory and data is only fair. It _s seen in figure 6 that

the theory is unable to account for the large difference in static

strength between the thread-cut and fatigue crack specimens of the
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normal material. It is also seen that good agreement with the theory was

obtained for the normal specimens containing fati_ue cracks. The agree-

ment in figure 7 is satisfactory except for the exaggeration of the

influence of short cracks by the theory. It is seen in figure 6 that

one point, corresponding to normal specimen 8, is decidedly low in com-

parison with the rest of the data for thread-cut notches. As Seen in

figure 4, this is the only point which opposes the trend that normal

specimens are stronger than decarburized specimens containing 0.005-inch

notches. Consequently, it is felt that this particular data point should

be viewed with suspicion.

The Griffith-lrwin method of analysis requires the determination of

a material constant Gc, which is defined as the critical crack extension

force for the onset of fast crack propagation. If Snu is below the

yield stress and if the crack length is not more than one-half the

specimen width, Gc for a centrally notched sheet in tension is defined

by the expression:

[Snu(W - 2a)q 2
G c : - tan ___a (5)

Ew w

where E is the modulus of elasticity measured in ksi. This equation

is further restricted to plane stress conditions and to cases where the

notches have sharp roots and propagate rapidly to fracture. Therefore,

in this investigation the equation is applicable to only the fatigue

cracked specimens.

The constant G c was calculated by using the experimental Snu for

specimens 9 and 12 for the decarburized and normal material, respectively.

The value was found to be 157 ib/in, for the decarburized material and

64 ib/in, for the normal material.

With the values of G c thus determined, the predicted residual

static strength as a function of crack length was computed for the mate-

rial in each condition by using equation (5). The predictions are shown

as the dashed curves in figures 6 and 7. As can be seen, the two methods

predict similar results for this material.

Crack Propagation Tests

The effects of decarburization on fatigue crack propagation in 12 MoV

stainless-steel sheet are shown in figure 5. The decarburized specimens

were able to sustain a longer crack prior to failure at all but one of

the stress levels at which the cracks were propagated. This reflects the
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fact that the material in this condition is less notch sensitive. In
general, decarburization had no significant i1_luence on crack propaga-
tion rate or fatigue life at a given level of So. The differences
observed are considered to be of the order of the range of scatter in
the data. Inspection of the specimensafter failure revealed that the
crack fronts were farther advanced at the cen!_er of the fracture cross

section than they were at the surface. It ma[r be, then, that the con-

dition of the core of the sheet is more impor_ant than the condition of

the surface in crack propagation. On the oth_r hand, the condition of
the surface should be a matter of concern in _tatic failure since

plastic deformation over a larger area and the entire sheet thickness
is involved.

In figure 8 the crack propagation rate i3 plotted as a function of

KNSne t for the decarburized and normal specimens at each stress level.

The analysis and method used to arrive at the figure are fully described

in reference 9- The stress concentration factor KN was computed by

using equation (4) with the value of p' (0.'0015 inch) obtained in the

residual static strength tests on normal specimens. The selection of

this one value of p' for the material in both conditions is felt to be

Justified since, as has been previously mentioned, the surface condition

of the sheet has no significant effect on crack-propagation rates in this

material. The crack-propagation rates presented refer to the progress of

only one end of the crack relative to the center line of the specimen.

The curves in figure 8 exhibit more scatter than did similar curves

for aluminum alloys (ref. 9). However, reasonable predictions of fatigue-

crack-propagation rate for a given net stress and crack length are possible

for the material in either condition. Included in the data is a short

curve plotted from fatigue-crack-growth data taken for normal specimen 12

prior to static testing. The good agreement with the 2-inch-wide specimens

is evident, and it indicates that the method may be used to predict rates

of fatigue crack propagation in specimens of widths other than those

employed in the test series.
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CONCLUDINGREMARKS

Type 12 MoV stainless-steel sheet in the normal condition has been

found to be extremely notch sensitive to fatdgue cracks at room tempera-

ture. Notch strengths as low as one-tenth oi the ultimate tensile

strength were obtained. Surface decarburiza_ion reduces this high notch

sensitivity, but, accompanying this decrease_ there is also a decrease in

ultimate tensile strength. The load-carrying capacity of decarburized

material when fatigue cracks are present is &Teater than that of normal
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material tested under the sameconditions. In specific applications of
this material, decarburizationmay be desirable in order to reduce the
notch sensitivity even though sometensile strength is sacrificed.

Studies of fatigue crack propagation have shownthat, at a given
stress level, there is no significant difference between the rates of
fatigue crack propagation in normal and decarburized specimens.
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TABLE I

NOMINAL COMPOSITION OF 12 MoV STAINLESS STEEL IN PERCENT WEIGHT

Carbon, C .......................... 0.25

Manganese, Mn .......................... 0.50

Silicon# Si ........................... 0.50

Chromium, Cr .......................... 12.0

Nickel, Ni ........................... 0.5

Molybdenum, Mo ......................... 1.0

Vanadium, V .......................... 0.3

TABLE II

HF_AT TREATMENT OF 12 MoV STAINLESS-STEEL SPECIMENS

Condition Austeniti ze Temper

Decarburi zed

0.025 inch thick

Normal

0.031 inch thick

1,850 ° F for 15 minutes;

air atmosphere; air
cool

1,850 ° F for 20 minutes;

dry hydrogen atmosphere;
air cool

900 ° F for 4 hours;

air cool

900 ° F for 4 hours;

air cool
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k_

O.031-inch-thick 12 MoV stainless steel_ normal condition; transverse

cross-sectlon edge; Marble's etch; x290.

O.025-1nch-thlck 12 MoV stainless steel; decarburlzed condition;

transverse cross-sectlon edge; Marble's etch; >290.

L-61-5065

Figure i.- Microstructure of 12 MoV stainles_i-steel sheet in normal and

decarburized conditiozLs.
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